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The scattering amplitude of an X-ray interferometer is calculated using a general theory of X-ray 
diffraction. Analytic expressions are given for the intensities of diffracted beams in interferometry; 
these expressions include the effect of the positions of each crystal lattice in addition to ordinary dynam- 
ical effects. It is concluded that the fringes observed in X-ray interferometry of a lattice spacing are 
accounted for by an optical (Moir6) effect rather than by dynamical effects of X-ray diffraction. 

1. Introduction 

The first X-ray interferometer was demonstrated by 
Bonse & Hart (1965a, b). Their success added the new 
subject of X-ray interferometry to the fields of X-ray 
diffraction and applied X-ray optics. An experiment 
performed by Deslattes (1969) indicated through sim- 
ultaneous X-ray and optical interferometry the pos- 
sibility of measuring crystal-lattice spacings with ac- 
curacies better than one part per million. 

The principle of X-ray interferometry was explained 
by Bonse & Hart (1965a, c) by means of a discussion 
based on standing wave fields caused by the dynamical 
effects of X-ray diffraction. Although Bonse & Hart 
(1965c) have attempted to present their explanation in 
an analytic form, their argument is still qualitative. 
Their results, though analytic for dynamical interfer- 
ence effects, do not contain analytic expressions which 
would connect dynamical wave fields with the lattice of 
each crystal. This shortcoming has its origin in the 
usual formulation of the dynamical theory of diffrac- 
tion. 

In the present paper, this shortcoming inherent in 
the ordinary formulation will be eliminated by using a 
more general theory of X-ray diffraction (Ashkin & 
Kuriyama, 1966; Kuriyama, 1967). The results will be 
given in an analytical form for the intensities of X-ray 
beams diffracted by the interferometer. It will be dem- 
onstrated that the interferometry of a lattice spacing is 
explained merely by ordinary optics (Moir6 interfer- 
ence). The dynamical effects are thus not really in- 
volved in the explanation of the principle underlying 
interferometry. This conclusion does not exclude the 
role of the dynamical effects in interferometry; the 
Bormann effect, for example, allows one to obtain 
maximum contrast in lattice spacing interference pat- 
terns, though this needs not be an optimal mode of 
operation in practice (Deslattes, 1969; Hart, 1968). 

2. The scattering amplitude of a crystal 

A general theory of X-ray diffraction has been devel- 
oped (Ashkin & Kuriyama, 1966; Kuriyama, 1967) 
wherein the generalized polarizability of a crystal is 

given by a non-local function F(xl; x2) that depends 
upon two independent space-time coordinates. In this 
theory translational invariance holds for time coordin- 
ates. Therefore the Fourier transform of the general- 
ized polarizability can be written as F(kx,k2; co). It has 
been shown by Kuriyama (1967) that this quantity is 
given by 

r (k ,  k2 ;co) = (V/N) ~/~ (k, k2 ;co) 
1 

exp [ -  i (k l -  k2). Rd,  (2.1) 

where V is the volume of the crystal, N is the total num- 
ber of atoms in the crystal, Ri is the position of the ith 
atom and ~/~(klk2;a)) is the 'atomic' polarizability of 
the ith atom. The quantities F and 7~ are tensors which 
characterize the rotation of the polarization directions 
of scattered X-rays. For simplicity, however, those 
quantities are treated in this paper as though they are 
not tensors: the polarization mixing effects (Ashkin & 
Kuriyama, 1966) are neglected and simple polarization 
factors modify the atomic polarizability. 

If the crystal is perfect and the unit cell contains n 
atoms specified by m(= 1,2 . . . .  n), then the position 
of the atoms can be given by 

Ri=Rz(m)=l+rm , (2.2) 

where I is the position of the origin of the lth unit cell, 
and rm denotes the position of the m th atom measured 
from the origin of the unit cell. Equation (2.1) thus re- 
duces to 

X, 
F(kl, kz;co)=(V/n~)~ exp [ - i ( k l - k 2 ) .  1] 

! 

× 2)'m(kbk2;co) exp [ - i ( k l - k 2 ) .  rm], (2"3) 
T /  

r n  

where N is the total number of unit cells in the crystal. 
The quantities )'m(k~,k2;co) give to lowest order the 
usual atomic scattering factors which depends only on 
k l -k2 .  Therefore we simplify them by writing 
ym(kl - k2; co). One can then write 

v(kl -  k2)-- ~ ym(ka-k2;co) 
m 

× exp [-- i(kx-k2), rm], (2"4) 

A C 2 7 A  - 6 
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where v is the X-ray structure factor of the unit cell 
(the explicit frequency (09) dependence of v has been 
omitted for convenience). Thus one obtains 

1-'(klkz;co)=(V/n){(1/N)~ exp [ - i ( k l - k 2 ) .  1]} 
! 

× V(kl-k2).  (2"5) 

Since 1 represents the periodic lattice vector, 
(1/.~)~ exp [ i (k l -k2) .  1] is equal to the generalized 

t 

Kronecker delta A(kl -kz)  which vanishes unless 
k l - k z = K  (2n times a reciprocal-lattice vector). Thus 
it gives the Laue interference function. 

In the scattering formalism of modem quantum 
mechanics, the scattering amplitude for diffracted 
X-rays is given by the probability amplitude of a photon 
in the wave packet state [k, v, R; in) to make a transi- 
tion to the state ]k', v'R'; out), where k is momentum, 
co= [k] is energy (with c = h =  1), v the polarization di- 
rection of the photon, R is the center position of the 
X-ray beam on the crystal, and the primes indicate 
those quantities for outgoing waves. The scattering 
amplitude is given (Ashkin & Kuriyama, 1966; Kuri- 
yama, 1967) (with v and v' suppressed) by 

(k', R'; out lk, R; in) 

=Sd3pld3p'A*(k',p ' ;R')S(p',p)A(k,p;R), (2"6) 

where A is the Fourier transform of the free photon 
wave packet depending on a parameter R which indi- 
cates the spatial location for the maximum intensity. 
This A is determined by the momentum and the energy 
distribution of the incoming X-ray beam. The quantity 
S(p',p) is the scattering matrix element. We will derive 
it for a crystal plate. To calculate the scattering matrix 
element S(p',p), it is sufficient from equation (2.6) that 
we need to consider only a plane wave as an incident 
beam. 

We introduce a coordinate system which is fixed in 
space. In this coordinate system, the normalized plane 
wave f ( x ;  k) is written 

f(x;k)=[2(2n)34nlk[]-'/z exp [i(k. r - l k l t ) ] ,  (2.7) 

where x represents the space-time coordinates (r,t). 
An incoming plane wave having an amplitude S(0)(p) 
and propagating in the p direction is then given by 

,Zj(x;p)=S(°)(p)f(x;k=p) . (2"8) 

This wave travels in space to reach a crystal plate which 
occupies the region between Z=Zo and Z=zo+L,  as 
shown in Fig. 1. After being diffracted by the crystal, 
the outgoing waves travel in space again like plane 
waves 

f f ( x ;p ' )=S(p ' ,p )S (° ) (p ) f (x ;k=p ') (2.9) 

in the p' direction. The possible directions p' are those 
for which S(p'p) does not vanish. 

t 

° V z 

x i  (x,p) 

z=zo !:::~:.....~..~:;:::...::::::.~:.:.....:?...~:.:.::y..:....~.::.... :...~.i~>~.i;i:...:.::..y.#....!::s~.~: 

Z=Zo + L 

Fig. 1. Diffraction by one crystal plate. A crystal plate of thick- 
ness L is located at a distance z0 from the position where the 
phase of the incoming X-ray wave is established. The wave 
packets Z~(x; p) and ZS(x; p') represent those in the initial and 
the final states, respectively. 

In the coordinate system fixed in space, the vector 
indicating the origin of the lth unit cell is given by 

l = d + l ' + z 0 ~ ,  (2-10) 

where d fixes the crystal lattice in space, and 1' is a lat- 
tice translational vector, and ~ is the unit vector in the 
z direction. Since the location of the crystal plate in 
space has been already introduced by z0, it is conven- 
ient to define the location of the lattice with respect to 
such a mathematically defined crystal plate. 

Using the method developed by Kuriyama (1967, 
1970) for an imperfect crystal and the polarizability 
from equation (2.5) along with equation (2.10) one ob- 
tains the scattering matrix of a perfect crystal: 

S(p',p) = (p~/Ipl) 6 (Ipl - Ip'l)~a(p, + K , -  p~) 
k 

x exp [i(pz + K,-p'~)Zo] exp [iK. d] 

x ~Fr~[i;pt ] exp [i(e,(,Pt)+ K , - p ' ) L ] ,  
i 

(2.11) 

where the subscript t indicates the projection of a vector 
on the crystal surface. The quantities Fg[i, Pt] are  called 
the dynamical field functions for the mode i. Their 
forms are given in the Appendix. They are obtained 
from the photon Green's functions which characterize 
the propagation of quasi-photons inside the crystal 
(see the Appendix). These dynamical field functions 
depend upon the tangential component of the wave- 
vector of the incoming photon, pt. In other words, they 
are given in terms of the quantity which describes the 
deviation of the incoming photon from the Bragg con- 
dition. The quantities c~,(pt) can be interpreted as the 
z component wave-vector for a quasi-photon (internal 
wave field) in the crystal. They are determined by a dis- 
persion equation [see equation (A.9)] for the given value 
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of the tangential component of the wave-vector of the 
incoming photon. Equation (2.11) gives the same result 
as ordinary dynamical theory, except that the phase 
factors, exp [i(p~+K~-p'~)zo] and exp [iK. d] now ap- 
pear. It is obvious that these phase factors do not play 
any significant role in the diffracted intensities for a 
single crystal; ordinary dynamical theory therefore is 
sufficient for a description of simple diffraction from a 
single crystal. 

However, it is important to note that the S matrix 
consists of the sum of many terms with differing K. 
For example, when the incident beam satisfies a single 
Bragg condition ( I p [ - p + H D ,  two final states (P~=Pt 
and Pt = Pt + a t )  simultaneously appear with K = O and 
H. The S matrix is therefore given by the sum of two 
terms, one in O direction and the other in the H direc- 
tion: in other words, in diffraction the amplitudes for 
component waves are added with a definite phase rela- 
tionship to give the total scattering amplitude. This 
statement is equivalent to saying that all component 

t 
0 

yo 
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Fig. 2. Diffraction by an X-ray interferometer. A geometrical 
arrangement of three crystals, the splitter (S), the mirror (M) 
and the analyzer (A), is shown. The crystal thickness is de- 
noted by L with a proper subscript. The mirror is located at 
a distance Ds away from the splitter, and DM away from the 
analyzer. The wave vectors in the gaps are given by Pa with 
cr=O, S, M and A. The quantities fl,~ represent the spatial 
locations of each crystal lattice. 

waves are coherent. In addition to the dynamical phase 
factor, exp [i(at(Pt) + Kz-p'z)L], which results in Pendel- 
16sung fringes and other interference effects, there are 
two other phase factors mentioned before. In one-crys- 
tal diffraction there is no easy way of combining two 
beams diffracted in different directions; therefore, the 
phase factors are undetectable. One can, however, de- 
tect them in an ingenious arrangement of multiple dif- 
fraction due to Bonse & Hart (1965a, b). As we shall see 
the phase factor exp [iK. d] is especially important in 
interferometry of a lattice spacing. 

3. The scattering amplitude of an X-ray interferometer 

The Bonse-Hart  X-ray interferometer requires diffrac- 
tion by more than one crystal so that X-ray beams 
initially diffracted in different directions can eventually 
be brought back together in the same direction to set 
up an interference pattern. Fig. 2 shows a geometrical 
arrangement of three crystals in an X-ray interferom- 
eter" a beam splitter (S), a transmission mirror (M) 
and an analyser (A). We again introduce a coordinate 
system fixed in space and describe the locations 
(ds, d / ,  da) of the three crystals in terms of that coor- 
dinate system. 

The amplitude of an incoming photon wave propa- 
gating in the P0 direction is denoted by S(0)(p0) which 
will be set equal to 1 in final results. Diffraction by the 
crystal S gives rise to outgoing waves propagating in 
the directions ps with amplitudes S(S)(ps,Po)S(O)(po) as 
shown in equation (2.9). These diffracted waves on 
their arrival at the crystal M become incident beams 
for M. The crystal M thereby diffracts them to produce 
another set of waves whose amplitude [again by (2.9)] 
is S(M)(pM,Ps)S(S)(pS,Po)S(O)(po), since the incoming 
amplitude for the crystal M is S(S)(ps,Po)S(O)(po). We 
repeat the same procedure for the crystal A to obtain 
for the scattering amplitude of the interferometer 

S(pA, Po) 

= S(A)(pA,PM)StM)(pM, Ps)S(S)(pS, Po)S(°)(po). (3"1) 

The quantity S(°)(po,p,,-1) where a - 0 ,  1 -  S, 2 - M  or 
3 - A ,  is the scattering amplitude of a crystal a, [ a = 0  
means no crystal: S(°)(po,po-1)-S(°)(po)]; the applica- 
tion of equation (2.11)yields 

S<~)(P~, P~-I) = [P~, z/IP~-i I]~(Ipo-ll -IPol) 

x ~ J(P,,-1,~ + Kt(a) - P,,,t) 
K (o') 

x exp [i(p~-l,Z+ Kz(a)-po,z)z(a)] exp [iK(o-). do] 
(3.2) 

X ~ FK (~r)[i(o') ;pcr-l,t] 
t (tx) 

× exp [i{~i(~)(po-l,t)+ Kz(a)-po, z}Lo], 

where K(o-) and i(o-) are a reciprocal-lattice vector and 
the mode of a quasi-photon in the crystal a, respec- 
tively. Using the notation of Fig. 2, we obtain 

A C 27A - 6* 
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z(1)=z(S) =Zo(=O) 
z(2) = z ( M )  = Zo + L s  + Ds  

z(3) = z(A) = Zo + L s  + Ds  + LM + DM . 

(3-3) 

Without a consequent loss of generality we can set z0 
equal to 0. 

The delta functions in equation (3.2) imply the energy 
and the momentum conservation rules (the Bragg re- 
flection condition) in diffraction. Since equation (3.1) 
contains three of S(°)'s, the momentum of the photon 
in the final state must satisfy the relation 

3 
pA,t =po,t+ ~ Kt(a). (3"4) 

The final direction of a beam emerging from an inter- 
ferometer depends only upon the sum of the three Kt(a) 
in the successive diffractions. This implies that optical 
paths determined by different combinations of K(a) 
can give rise to the same resultant beam. As shown 
above in § 2, diffracted beams with differing optical 
paths are coherent with each other. 

We now make the realistic assumption that all three 
crystals in the interferometer are of the same kind crys- 
tallographically and are aligned in the same crystal- 
lographic direction. Furthermore, for this alignment an 
incident X-ray beam satisfies a single Bragg condition, 
Ip0l ~- Ip0 + HI. This geometry implies that in the crystals 
the generalized polarizability has non-vanishing values 
only for v(O), v(+H) and consequently v ( -H) .  As 
shown in the Appendix, the possible non-vanishing 
dynamical field functions F~ in this case are those 
having K = O and either H or - H .  

In p:aetice one uses an incident l:eam of finite width. 
Thus, the scattering matrix of equation (3.1) should be 
substituted into the scattering amplitude formula (2,6) 
with an appropriate form of A(k,p;R) that represents 
the location and the spectral distribution of the incident 
beam. The scattering amplitude of equation (2.6) is a 
function of R and R'; the location R' of a diffracted 
beam depends upon the combination of K's that deter- 
mines the optical path. To guarantee interference ef- 
fects, the beams must come out of the third crystal al- 
most at the same location. The exit position R' for the 
outgoing wave can be found from considerations 
(Ashkin & Kuriyama, 1966; Kuriyama, 1968) of clas- 
sical energy flow. Of the many paths possible, the fol- 
lowing ones give rise to interference: 

Pa thI  [K(S),K(M),K(A)]=(O,H,-H);~K(a)=O 
Path II [ K ( S ) , K ( M ) , K ( A ) I = f f I , - H , O ) ; ~ K ( o ) = O  

Path l I I  [K(S ) ,K (M) ,K(A) ]=(O ,H ,O) ;  ~ K ( a ) = H  

Path IV [ K ( S ) , K ( M ) , K ( A ) ] = ( H , - H , I - I ) ; ~ K ( a ) = H .  

Paths I and II produce outgoing photons at the same 
location which propagate in the transmitted direction 

(PA = P0); paths III and IV result in the photons propa- 
gating in the Bragg diffracted direction (PA ~p0+H)  
from the same location on the third crystal. 

We now calculate equation (3.1) using equation (3.2) 
for these combinations of the K's. From the momen- 
tum and the energy conservation rules in equation (3-2), 
the propagation vectors of the photons Ps, PM, and p.4 
in gaps between the crystals are determined for each 
path, as listed in Table 1. In calculating S(-) for each 
crystal, we need to know three exponential phase fac- 
tors appearing in (3.2). Once the path is given, these 
phase factors are easily obtained from the table: for 
example, if we are interested in the mirror crystal for 
path I, then the block given by the row for 0 - = 2 - M  
and the column for path I in the Table gives the values 
for the tangential component (PM)t and for the z com- 
ponent (PM)z in terms of those for the incoming photon 
P0. The dynamical phase shift in this crystal, ~(M)+ 
Kz(M)--pu,  z, is found also in this block to be 6~(~. 
The optical phase shift for this crystal, ps,  z + K z ( M ) -  
PM, z, is given in the last row in the path I column to be 
+ A. The dynamical field function for this case is found 
to be FH[i(M),Po,t] because from the Table K ( M ) = H  
and p,-1,t=Ps,t=P0,t (o'=2 in this case). The solutions 
of dispersion equations, cq(p~-~,t), can be expressed in 
terms of the solution ei(P0,t) for the incoming beam, 
since the tangential components of the momenta, p~_~ 
are related to p0,t. In Table 1 we have introduced the 
following quantities for convenience: 

and 

where 

and 

If we set 

3i = at(P0,t)-P0 z, (3"5) 

3't = al(P0.t) + H z - P n , , ,  (3"6) 

po,z= + 1/~-0)-2- (p0~i) 2 (3"7) 

pn , z  = + l/(po)2-(Po,t + I-It) 2 . (3"8) 

2~ = p ~ -  (po + H)2+ (1 - r)v(O), (3"9) 

and 
R =/e2 4 ~( + H)v(- H), 

T= 1 +(Hz/po, z) , 

0.1o) 

(3.11) 

then the solution of a dispersion equation for the initial 
state @0) is given by 

1 iv(O)+ 1 { ~ + ( _ I ) ~ R }  ] (3-12) o~(Po,t)-Po, z -  2po,~ ~- ' 

where the mode with i=  1 is the anomalous transmis- 
sion mode while the mode with i = 2  is the anomalous 
(strong) absorption mode. 

As seen from Table 1, Fo[i;p0,t ], Fn[i, p0,t ], Fo[i;p0,t 
+Ht] and F-n[i;p0,t +I-It] are the dynamical field func- 
tions necessary for evaluating equation (3-1). After 
performing several steps of calculation on equations 
(A.6) to (A.8) one obtains 
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and 

fn[i, po,t]- ( -1) i  v(+I-I) (3.14) 
2 R 

. g  
Fo[i;po,t+ H,] :½ [1 + ( - 1 ) ' ~ - ]  , (3.15) 

F-n[i;po,t+Ht]- ( -  1)i v ( - H )  (3'16) 
2 z ~  

In equation (3.1) there appear only products of three 
of these functions with a proper combination of K(a). 
To express them, it is convenient to define the following 
quantities: 

~'(i)=(2R)-3(RZ-e 2) [ R - ( -  1)%], (3'17) 

f# = (2R)-3(R 2 -  eZ)v(+ H) (3.18) 
and 

R - ( -  1)~e 
f(i , j)  = R - ( -  1)it " (3.19) 

Furthermore, we denote the energy momentum con- 
servation equation by ~ with K = O for the transmitted 
direction and K = H for the Bragg diffracted direction, 
and reduce it to 

~K ~ (PA, z/[PoI)fi(PA --Po)fi(,PA,t + K t -  P0,t) 

= 3(pA,z + Kz--pK, z)(~(pA,t "[- Kt - P0,t), (3"20) 

where pv,,z are given by equations (3.7) and (3.8). 
A detector set at a proper distance from the interfe- 

rometer receives only photons propagating in the trans- 
mitted direction (~K(a)= O) or those in the Bragg dif- 
fracted direction (~K(a) = H). The scattering amplitude 
observed by the detector in the O direction, 
(Pa; out[p0; i n ) -So  is given by 

So=I exp [i{H. (dM--dA)--ADM}] 

+II  exp [i{H. (ds -dM)-ADs}] ,  (3.21) 

while the one in the H direction, (PA; outlp0; in)= Sn, 
is 

SH= [III exp [ - i { H .  (ds -dM)-ADs}]+ IV 

exp ( - i { H .  (dM--dA)--ADM})] exp [ill .  ds], (3.22) 

where 

I=  ~ ~ ~. (--1)l(M)+i(A)o~[i(S)] 
t(A) i(MO t(S) 

exp [i{&(A)La + &(M)L(M) + &(s)Ls}] (3"23) 

II= ~ ~ ~ (--1)~(u)+i(s)~'[i(A)] 
i(A) 1(3"I) i(S) 

exp [i{&(A)LA + &(M)LM + &(s)Ls}] ~k(3"24) 

III=f¢ Z ~. Z ( -  1)~(M)f(i(S),i(A)) 
t(A) t(~I) t(,$) 

exp [i{5[(a)La+5~(M)LM+5~(s)Ls} ] (3"25) 

IV= f¢ ~ ~ ~ ( -  1)'(M)+~(A)+i(s) 
i(A) l(M) t(S) 

exp [i{fi;(a)L a + 61(M)L m + fi;(s)Ls}] (3.26) 

A =5 i - i l l  =52-52.  (3-27) 

In evaluating the scattering amplitude equation (2.6) 
in terms of equation (3.1) the fi function (3.20) merely 
determines the possible momenta for the final state. 

4. Conclusion and discussion 

(a) The principle of the X-ray interferometer 
The results obtained in the previous section are the 

same as those expected from the ordinary dynamical 
theory, except that the phase factors, exp [iH. (d s -  
dM)] and exp [iH. (dM--dA)] appear in the present re- 
sults. As discussed in § 2, there is a definite phase shift 
in the scattered wave (only for K # O) due to the posi- 
tion of the crystal lattice. It is not detectable in intensity 
measurements in diffraction by one crystal. However, 
in diffraction by several crystals the phase shifts due to 
the relative positions of the crystal lattices explicity in- 
fluence the resultant intensities of diffracted waves. 

Table 1. Propagation vectors of photons in gaps between the crystals 
Transmitted direction Bragg diffracted direction 

Crystals (a) Paths Path I Paths II Path III Path IV 

K(S), K(M), K(A) O, H, - H  H, - H ,  0 O, H, 0 H, - H ,  H 

a = 1 = S (Ps ) t  = p s , t  Po,~ Po,t + Ht Po,~ Po,t + H t  
(Ps)z = p s,z Po,z P n,z  PO,z P ~,~ 
a~(s) + K~(S) - p s , t  hi(s) 5'~(s) &(s) b~ (s) 

a = 2 - M  (PM)*=pM,T  P0,t +Ht  P0,~ P0,t +Ht  Po,t 
(PM)z ---- p M,z p tt,z PO,z P H ,z PO,z 
a~(M) + K z ( i )  --pM,z 5~ (M) 5~(M) 5~ (M) •(M) 

a = 3 ------ A (Pa) t  = PA,t P0,t P0,t Po,t + Ht P0,t + H t  
(PA)z =pA ,z PO,z PO ,z pH,z pH,z 
a~(a) + Kz( A)  -- P A,z (~(A) ~(A) (~ (A) ~ (A) 

ps , z  + K z ( M )  --pM,z  A(  =- 6~ -- &)  -- A A -- A 
pM,z + Kz(A)  --PA,z -- ,d 0 0 d 
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The intensities of the beams diffracted by the inter- 
ferometer are given by modulus square of So and Sn  
and contain only the relative shifts of the crystal lat- 
tices, d s~  = d s -  dM and alMA = riM-- dA. These obser- 
vable intensities are 

10= IS012=lI exp {iHdMA} exp {- iADM} 

+ I I  exp {iHdsM} exp {-iADs}[ 2 (4.1) 
and 

In=lSHlZ=llV exp {--iHdMA} exp { +iADM} 

+ I I I  exp { - i H d s ~ }  exp {+iADs}[ 2 . (4.2) 

The quantities I, II, III, and IV, defined by equations 
(3-23) to (3.26), contain all of the dynamical effects in 
each optical path. For instance, the quantity I includes 
every possible quasi-particle mode which occurs as a 
result of dynamical interactions in the optical path I 
through all the crystals. On the other hand, the phase 
factors appearing in equations (4.1) and (4.2) do not 
depend on those dynamical modes; therefore it is con- 
cluded that the presence of these phase factors is merely 
the consequence of an optical effect (i.e. the difference 
in optical path lengths depends on different wave-vec- 
tors), and is not accounted for by the dynamical effects. 
It is the presence of these phase factors, especially 
those related to alMA and dsu ,  that leads to the inter- 
ference effect in which the lattice spacings of the crys- 
tals are revealed, as has been demonstrated experiment- 
ally (Hart, 1968; Deslattes, 1969). 

Since the dynamical effects are built in the quantities 
I-IV, the Pendell~Ssung effect or the effect caused by 
inserting a different crystal (medium) is completely re- 
produced in the present formulation to give the same 
results as discussed by Bonse & Hart (1965a) and Kato 
& Tanemura (1967). Therefore, further discussions are 
centered exclusively on interferometry of a lattice 
spacing. 

(b) Interferometry of a lattice spacing 
To demonstrate the observations of a lattice spacing 

by interference, we consider first the original Bonse- 
Hart diffraction arrangement. In this arrangement, the 
crystals are so thick that only the anomalous trans- 
mission mode ( i(A)=i(M)=i(S)= 1) passes through 
the crystals. Furthermore, the interferometer is as- 
sumed to be tuned to give maximum efficiency of trans- 
mission. As seen from equations (4.1) and (4.2) the 
maximum dynamical intensity* is not necessarily ob- 
tained in that tuning, because of the presence of d~A 
and dsm. We can only obtain the maximum efficiency 
of transmission in a given arrangement of the crystals. 
It may be obtained when DM is set equal to Ds: (the 
crystals are equally spaced). This equidistance condi- 
tion was obtained in previous argument (Ashkin & 

* In the Bonse & Hart (1965a) calculation, the intensities of 
diffracted beams in maximum transmission always become 
equal to the maximum dynamical intensity. 

Kuriyama, 1966; Kuriyama, 1968) concerning exit loca- 
tions of the outgoing waves to secure the maximum 
overlapping of different paths. Under the equidistance 
condition we obtain 

and 

since 

and 

I0 = 4l~-(1)l 2 cos2 -}{H(d~A- dsM)}, (4.3) 

In  =41 ffl 2 cos 2 ½{H(dMA--dsM)}, (4"4) 

I = I I  =~-(1) exp [ifil(LA+LM+Ls)] (4.5) 

I I I = I V =  - ~ exp [i6~(LA+Lm+Ls) ] . (4.6) 

It is immediately observed from equations (4-3) and 
(4.4) that the scattered intensity changes from its max- 
imum value to its minimum if either the splitter crystal 
(dsM) or the analyzer (alMA) is shifted with respect to 
the remaining crystals by the amount of half a Bragg 
spacing in the direction parallel to H. Bonse & Hart 
(1965c) predicted this result using an intuitive argu- 
ment. The motion of the crystal can be in any direction. 
Only the projection of the motion toward the H direc- 
tion determines the positions of the alternate maxima 
and minima. If the mirror crystal is shifted instead with 
respect to the other crystals, then the scattered intensity 
repeats its maximum and minimum at every crystal 
move of a quarter a Bragg spacing. Since the mirror is 
moved rather than the splitter or analyzer, the optical 
path length on both sides of the mirror crystal changes 
as in ordinary optical interferometers, and causes a 
doubly dense interference pattern. When the three crys- 
tals are thick permitting only the anomalous transmis- 
sion modes to pass the interferometer, the contrast 
factor reaches 100%. 

It has become obvious in the above derivation that 
the assumptions of thick crystals and of equidistance 
condition are not really necessary to obtain an inter- 
ference pattern due to a lattice spacing. At a slight loss 
of fringe visibility, but with an increase in resultant 
intensities one can obtain, from an interferometer con- 
sisting of the crystals of arbitrary thickness, an inter- 
ference pattern of the same spacing as discussed above. 
To prove this, we next consider a general case. The 
quantities I to IV can be written generally as 
II[ exp [iqbI] and IIII exp [iq~ir] etc. Equation (4.1) for 
example, then reduces to 

10=llIZ+llllZ+ 21111111 cos {H(dMA-- dsM) 

-- A(DM- Ds) + ~ I -  ~I I} .  (4"7) 

Since the quantities II] and [III do not depend upon the 
variable dMA--dsM, the spacing between a maximum 
and its adjacent minimum, X=(dmA--dsM)Max-- 
(alMA- dsM)Min satisfies the condition 

I t .  X=~r,  (4.8) 

regardless of the values of crystal thickness, of D M -  Ds 
and of ~bi-~bii. The same argument holds for In ob- 
viously. 



MASAO K U R I Y A M A  279 

(c) Fringe visibility in thin crystal cases 
Contrast factors for fringe visibility may be defined 

by equations (4.1) and (4.2) as 

Co=41I[lII[/lII z+ ]II[ 2 (4.9) 

in the transmitted direction and 

CH=4IlIII[IVI/[III[2+[IV[ 2 (4.10) 

in the Bragg diffracted direction, where I I indicates the 
modulus of the quantities I to IV. When the crystals 
are thin, all the modes in each path must be taken into 
account to evaluate equations (4.9) and (4.10). In general 
it is tedious to calculate these contrast factors. How- 
ever, it can be concluded generally that the contrast 
factors in both directions may be different. In certain 
special cases (for instance, if the splitter has the same 
thickness as the analyzer), it can be shown that in both 
path I and path II a change of mode cannot occur; 
that is, the mode (say, i(S)= 1) in the splitter cannot 
excite a different mode (say, i(A)=2) in the analyzer. 
On the other hand, for paths III and IV such an ex- 
change is allowed. This case gives III = IIII so that the 
contrast factor can reach 100% for the transmitted 
direction. However, the contrast factor for the Bragg 
diffracted direction cannot reach 100 %. 

The author wishes to thank Dr R. D. Deslattes and 
Dr W. C. Sauder for their helpful discussions. 

A P P E N D I X  

Dynamical field functions 

In the derivation of the scattering amplitude one needs 
first to solve the photon Green's function equation, and 
to evaluate the complex integrals appreaing in the am- 
plitude in terms of their residues. The photon Green's 
function is a basic quantity describing how a 'photon' 
propagates in the material especially when the Bragg 
conditions are nearly satisfied. It is also called the 
Bragg diffracted propagator. In this paper we are con- 
cerned with the case of a single Bragg diffraction where 
for a given wave-vector p there is only one reciprocal- 
lattice vector, either H or - H ,  such that the Bragg 
condition [Pl = IP + HI or IP-HI is approximately satis- 
fied. In this case, the Fourier transform of the photon 
Green's function equations can be written 

where 

and 

MD =4hE,  

/O(q-H) -v(-H) 
= O(q) 

M ~ o V ( + H ) - v ( + H )  

[D-n(q)'~ 
O =/Do(q) ] 

\D+n(q)] 

E =  

O(q + H ) /  

(A.1) 

(A.2) 

(A.3) 

(A.4) 

The quantity O(q + K) is given by 

O(q+ K) = (q+ K)2- 03z- v(O), (A.5) 

where 03 is the energy of the incoming photon, that is, 
]p[. The solutions D x are then substituted into the 
scattering amplitude. They appear as part of integrands, 
since the scattering amplitude is given in an integral 
form. The scattering amplitude is then evaluated by 
contour integration. The residues contain the following 
functions 

F-n[i ; ptl = (fli + pz) 

[ ] x f2(q+H)v(-h0/-ffS2o det M 
qt=Pt; qz=fl  l 

(A.6) 
Fo [ i ; pt] = ( fl~ + pz) 

x [f2(q-H)f2(q+ H)/ 3~z det Ml.t=.m.= & 

(A.7) 
Ft~[i;pd=(~, +p,) 

x f2(q- H ) v ( + H ) / - ~  det M .t=m; q.=& 

(A.8) 

They are called dynamical field functions. The quantity 
pi = f l~ t )  which is a function ofpt is a pole of the com- 
plex integrals, and is determined by 

[det M]qt=pt: a : &  = 0 .  (A.9) 

This equation is called a dispersion equation which 
determines the possible modes of the dressed photon 
created by the incoming photon and the crystal elec- 
trons nation. Equation (A.9) can be written in either 
one of the following forms: 

[ O ( q -  H) det mH(q) (A. 10) 
det M 5 

[O(q + H) det m-n(q) (A.1 l) 

depending on whether g2(q- H) >~ O(q + H), or O(q + 
H) >~ O ( q -  H), where 

and 
det rnn(q)=f2(q)f2(q+I-1)-v(H)v(-H) (A.12) 

det m-H(q)=f2(q-H) f2(q) -v(H)v( -H) .  (A.13) 

In § 3, we have encountered the situation where pt in 
(A.6) to (A.8) is either Po,t or p0,t+Ht. If the modes 
for P0,t are denoted by P,(P0,t)-= ei, then it follows from 
equations (A. 12) and (A. 13) that fll(p0,t + Ht) = e, + Hz, 
since 

[det mn(q)]q,=po,: q,=~i 
=[det m--H(q)]qt=PO,t+Ht;qz=~i+Hz. (A.14) 

Therefore, only one set of c~i's is required to describe 
Fo[i, p0,t], FH[i, p0,t], Fo[i, po,t+Ht] and F-H[i, p0,t+Ht]. 
Using the quantities defined by equations (3.5) to (3.12) 
we obtain 
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det mH(q) = 4 ( -  1)~c~,R (A.15) 
qt=P0,t; qz=Ctl 

[f2(q)la/=po,: ~,=~1= [f2(q- H)]q,=l,o.,: e,+~, 

_- 1 [e+(_ l )~R ] (A.16) 
T 

[f2(q+H)]q,=v0. , ;q~=,n=-[e-(-  1)iR]. (A.17) 

Substituting these results in (A.6) to (A.8) we can obtain 
equations (3-13) to (3.16) for dynamical field functions. 
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Some Properties of the Single-Crystal Rocking Curve in the Bragg Case 
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In the present article (i) a new formula for the single-crystal rocking curve for both the centrosym- 
metric and polar Bragg case is given; (ii) a geometrical construction is derived, whence many proper- 
ties of the rocking curve are easily visualized; (iii) the different analytical expressions introduced by 
several authors are shown to be a consequence of different definitions of the variable 'y'. 

1. Introduction 

The rocking curve (RC) for perfect crystals in the 
Bragg case has been discussed by many authors. A list 
of references may be found in well-known books (e.g. 
Zachariasen, 1945; Laue, 1960; James, 1950) or in the 
articles of Hirsch & Ramachandran (1950), Batterman 
& Cole (1964) and Bucksch, Otto & Renninger (1967). 
Although many of these authors follow the treatment 
of Zachariasen, the expressions in the 'normalized 
variable y'* differ slightly one from the other. 

The first difference was pointed out by Hirsch & 
Ramachandran (1950). Their expression is more gene- 
ral than that of Zachariasen, and the discrepancy is 
shown to be a consequence of some approximations. 
Cole & Stemple (1962) derived a general expression 
for both the centrosymmetric and polar case and 
Bucksch, Otto & Renninger (1967) made a physical 
analysis of it. In their paper (p. 508) one reads (in a 
loose translation) - 'For  small g and ~:t the tails of the 

* By 'normalized y' we mean a linear transform of the devia- 
tion from the Bragg angle such that the range of total reflexion 
lies between v = -  1 and v= 1 

t Defined as 

]Fu" I 1 - b  Fo" 
K-- -F# , g=-½1blmle I . IFn,I . 

RC approach the Darwin curve asymptotically from 
below. But for greater g and J¢ they rise above this 
curve.' 

On the other hand, Battermann & Cole (1964, p. 707) 
state 'The Darwin-Prins curve matches the Darwin 
curve only at a point close to the low angle slope of the 
peak. It is less than the Darwin curve at all other 
points'. Since they also use some approximations 0c) 
the last statement seems to be their consequence. These 
two statements are rather contradictory. Therefore in 
the first part of the present article we shall follow 
Batterman & Cole's (1964) (hereafter BC) derivation, 
showing that their statement is quite general, and we 
shall derive a modified formula for the RC. 

In the second part we shall give a simple geometrical 
construction by means of which one can visualize 
many interesting properties of the RC. 

Finally we shall show, that by redefining the 'nor- 
malized variable y '  by means of a linear transformation, 
one gets the formulae of Hirsch & Ramachandran 
and Cole & Stemple, and thus the statement of 
Bucksch, Otto & Renninger will be brought into agree- 
ment with that of BC. 

2. Derivation of the general formula 

By definition the RC is the ratio of the diffracted and 
incident power plotted as a function of deviation from 
the Bragg angle 0-0B, i.e. 


